Extensions 1→N→G→Q→1 with N=C2 and Q=C22×F7

Direct product G=N×Q with N=C2 and Q=C22×F7
dρLabelID
C23×F756C2^3xF7336,216


Non-split extensions G=N.Q with N=C2 and Q=C22×F7
extensionφ:Q→Aut NdρLabelID
C2.1(C22×F7) = C2×C4×F7central extension (φ=1)56C2.1(C2^2xF7)336,122
C2.2(C22×F7) = C22×C7⋊C12central extension (φ=1)112C2.2(C2^2xF7)336,129
C2.3(C22×F7) = C2×C4.F7central stem extension (φ=1)112C2.3(C2^2xF7)336,121
C2.4(C22×F7) = C2×C4⋊F7central stem extension (φ=1)56C2.4(C2^2xF7)336,123
C2.5(C22×F7) = D286C6central stem extension (φ=1)566C2.5(C2^2xF7)336,124
C2.6(C22×F7) = D4×F7central stem extension (φ=1)2812+C2.6(C2^2xF7)336,125
C2.7(C22×F7) = D42F7central stem extension (φ=1)5612-C2.7(C2^2xF7)336,126
C2.8(C22×F7) = Q8×F7central stem extension (φ=1)5612-C2.8(C2^2xF7)336,127
C2.9(C22×F7) = Q83F7central stem extension (φ=1)5612+C2.9(C2^2xF7)336,128
C2.10(C22×F7) = C2×Dic7⋊C6central stem extension (φ=1)56C2.10(C2^2xF7)336,130

׿
×
𝔽